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Abstract 
K-means is one of the simplest unsupervised learning algorithms that solve the well known clustering problem. 

The procedure follows a simple and easy way to classify a given data set through a certain number of clusters 

(assume k clusters) fixed a priori. The main idea is to define k centroids, one for each cluster. These centroids 

should be placed in a cunning way because of different location causes different result. So, the better choice is to 

place them as much as possible far away from each other.  

 

I. Introduction 
The Clustering is the process of grouping 

physical or abstract objects into classes of similar 

objects. And also is a process of partitioning a set of 

data (or objects) into a set of meaningful sub-classes, 

called clusters.  

Whereas K-means clustering is a method often used 

to partition a data set into k groups. It proceeds by 

selecting k initial cluster and then iteratively refining 

them as follows:   

1. Initialize the center of the clusters  

μi= some number ,i=1,...,k 

2. Attribute the closest cluster to each data point 

ci={ j:d (xj,μi) ≤ d (xj,μl) , l≠i , j=1 ,..., n } 

3. Set the position of each cluster to the mean of all 

data points belonging to that cluster 

μi= 1 |ci| ∑ j∈ci xj , ∀ i 

4.  Repeat steps 2-3 until convergence therefore 

|c|= number of elements in c. 

This algorithm eventually converges to a point, 

although it is not necessarily the minimum of the sum 

of squares. That is because the problem is non-

convex and the algorithm is just a heuristic, 

converging to a local minimum. The algorithm stops 

when the assignments do not change from one 

iteration to the next iteration.  

If the choice of the data is incorrect, the process 

becomes invalidate. Where as the best number of 

clusters is to try K-means clustering with different 

number of clusters and measure the resulting sum of 

squares[6]. 

Cluster analysis [4] is one of the major data 

analysis methods which is widely used for many 

practical applications in emerging areas like 

Bioinformatics [5]. Clustering is the process of 

partitioning a given set of objects into disjoint 

clusters. This is done in such a way that objects in the 

same cluster are similar while objects belonging to 

different clusters differ considerably, with respect to 

their attributes. 

Regarding computational complexity, finding the 

optimal solution to the k-means clustering problem 

for observations in d dimensions is: 

 NP-hard in general Euclidean space d even for 2 

clusters [7]  

 NP-hard for a general number of clusters k even 

in the plane [8] 

 If k and d (the dimension) are fixed, the problem 

can be exactly solved in 

time , where n is the 

number of entities to be clustered [9] 

 

II. Clustering by K-means Algorithm : 
This section describes the original k-means 

clustering algorithm. The idea is to classify a given 

set of data into k number of disjoint clusters, where 

the value of k is fixed in advance. The algorithm 

consists of two separate phases: the first phase is to 

define k centroids, one for each cluster. The next 

phase is to take each point belonging to the given 

data set and associate it to the nearest centroid. 

Euclidean distance is generally considered to 

determine the distance between data points and the 

centroids. When all the points are included in some 

clusters, the first step is completed and an early 

grouping is done. At this point we need to recalculate 

the new centroids, as the inclusion of new points may 

lead to a change in the cluster centroids. Once we 

find k new centroids, a new binding is to be created 

between the same data points and the nearest new 

centroid, generating a loop. As a result of this loop, 

the k centroids may change their position in a step by 

step manner. Eventually, a situation will be reached 

where the centroids do not move anymore. This 

signifies the convergence criterion for clustering. 
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Pseudocode for the k-means clustering algorithm is listed as Algorithm 1 [1]. 

 

 The K- means clustering Algorithm. 

__________________________________________________________________________ 

Input:  

D = {d1, d2,......,dn} //set of n data items. k // Number of desired clusters  

Output:  

    A set of k clusters. 

Steps:  

            1. Arbitrarily choose k data-items from D as initial centroids; 

            2. Repeat 

            3. Assign each item di  to the cluster which has the closest                                                        

                  centroid;                                                                                                 

                 Calculate new mean for each cluster; 

                 Until convergence criteria is met. 

___________________________________________________________________________ 

 

The k-means algorithm is the most extensively studied clustering algorithm and is generally effective in 

producing good results. The major drawback of this algorithm is that it produces different clusters for different 

sets of values of the initial centroids. Quality of the final clusters heavily depends on the selection of the initial 

centroids. The k-means algorithm is computationally expensive and requires time proportional to the product of 

the number of data items, number of clusters and the number of iterations. 

In the optimization of clustering method discussed in this paper, both the phases of the original k-means 

algorithm are modified to improve the accuracy and efficiency. The enhanced method is described in Algorithm 

2. 

 

Algorithm – 2 : The optimized Method  

_________________________________________________________________________ 

Input:  

        D = {d1, d2,......,dn} // set of n data items k // Number of desired clusters 

 Output:  

       A set of k clusters.  

 Steps:  

     1: Determine the initial centroids of the clusters by using Algorithm 2.1. 

     2: Assign each data point to the appropriate clusters by using Algorithm 2.2. 

___________________________________________________________________________ 

 

In the first point, the initial centroids are determined systematically so as to produce clusters with better 

accuracy [3]. The second point makes use of a variant of the clustering method discussed in [2]. It starts by 

forming the initial clusters based on the relative distance of each data-point from the initial centroids. These 

clusters are subsequently fine-tuned by using a heuristic approach, thereby improving the efficiency. The two 

points of the enhanced method are described below as Algorithm 2.1 and Algorithm 2.2. 

 

Algorithm - 2.1 Finding the initial centroids 

___________________________________________________ 

Input:  

D = {d1, d2,......,dn} // set of n data items k // Number of desired clusters  

Output: 

 A set of k initial centroids .  

Steps: 1. Set m = 1;  

           2. Compute the distance between each data point and all other data- points in the set D;     

            3. Find the closest pair of data points from the set D and form a data-point set             Am (1<= m <= k) 

which contains these two data- points, Delete these two data points from the set D; 

           4. Find the data point in D that is closest to the datapoint set Am, Add it to Am and delete it from D;  

           5. Repeat step 4 until the number of data points in Am reaches 0.75*(n/k);  

          6. If m<=m<=k) find the arithmetic mean of the vectors of data points in Am, these means will be the 

initial centroids. 

__________________________________________________________________________ 
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Algorithm 2.1 describes the method for finding initial centroids of the clusters [3]. Initially, compute the 

distances between each data point and all other data points in the set of data points. Then find out the closest 

pair of data points and form a set A1 consisting of these two data points, and delete them from the data point set 

D. Then determine the data point which is closest to the set A1, add it to A1 and delete it from D. Repeat this 

procedure until the number of elements in the set A1 reaches a threshold. At that point go back to the second 

step and form another data-point set A2. Repeat this till ’k’ such sets of data points are obtained. Finally the 

initial centroids are obtained by averaging all the vectors in each data-point set. The Euclidean distance is used 

for determining the closeness of each data point to the cluster centroids. The distance between one vector X = 

(x1, x2, ....xn) and another vector Y = (y1, y2, …….yn) is obtained as  

d(X,Y)=  𝒙𝟏 − 𝒚𝟏 𝟐 +  𝒙𝟐 − 𝒚𝟐 𝟐 +⋯… 𝒙𝒏 − 𝒚𝒏 𝟐 

 

The distance between a data point X and a data-point set D is defined as d(X, D) = min (d (X, Y ), where Y 

∈ D). The initial centroids of the clusters are given as input to the second phase, for assigning data-points to 

appropriate clusters. The steps involved in this phase are outlined as Algorithm 2.2 

 

Algorithm 2.2  Assigning data-points to clusters 

___________________________________________________________________________ 

 Input:  

       D = {d1, d2,......,dn} // set of n data-points. 

      C = {c1, c2,.......,ck} // set of k centroids  

 

Output: 

 A set of k clusters 

 Steps:  

1. Compute the distance of each data-point di (1<=i<=n) to all the centroids cj (1<=j<=k) as d(di, cj); 

2. For each data-point di, find the closest centroid cj and assign di to cluster j. 

3. Set ClusterId[i]=j; // j:Id of the closest cluster 

4. Set Nearest_Dist[i]= d(di, cj); 

5. For each cluster j (1<=j<=k), recalculate the centroids; 

6. Repeat 

7. For each data-point di, 

7.1 Compute its distance from the centroid of the present nearest cluster; 

7.2 If this distance is less than or equal to the present nearest distance, the data-point stays in the cluster; Else 

7.2.1 For every centroid cj (1<=j<=k) Compute the distance d(di, cj); Endfor; 

7.2.2 Assign the data-point di to the cluster with the nearest centroid cj 

7.2.3 Set ClusterId[i]=j; 

7.2.4 Set Nearest_Dist[i]= d(di, cj); Endfor; 

8. For each cluster j (1<=j<=k), recalculate the centroids; Until the convergence criteria is met. 

___________________________________________________________________________ 

 

The first step in Phase 2 is to determine the 

distance between each data-point and the initial 

centroids of all the clusters. The data-points are then 

assigned to the clusters having the closest centroids. 

This results in an initial grouping of the data-points. 

For each data-point, the cluster to which it is assigned 

(ClusterId) and its distance from the centroid of the 

nearest cluster (Nearest_Dist) are noted. Inclusion of 

data-points in various clusters may lead to a change 

in the values of the cluster centroids. For each cluster, 

the centroids are recalculated by taking the mean of 

the values of its data-points. Up to this step, the 

procedure is almost similar to the original k-means 

algorithm except that the initial centroids are 

computed systematically. 

 

 

 

III. An Example 
Suppose that we have n sample feature 

vectors x1, x2, ..., xn all from the same class, and we 

know that they fall into k compact clusters, k < n. 

Let mi be the mean of the vectors in cluster i. If the 

clusters are well separated, we can use a minimum-

distance classifier to separate them. That is, we can 

say that x is in cluster i if || x - mi || is the minimum of 

all the k distances. This suggests the following 

procedure for finding the k means: 

 Make initial guesses for the means m1, m2, ..., mk 

 Until there are no changes in any mean 

o Use the estimated means to classify the 

samples into clusters 

o For i from 1 to k 

 Replace mi with the mean of all of the samples 

for cluster i 

o end_for 
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 end_until 

Here is an example showing how the 

means m1 and m2 move into the centers of two 

clusters. 

 
 

A simple approach is to compare the results of 

multiple runs with different k classes and choose the 

best one according to a given criterion ,Note that  we 

need to be careful because increasing k results in 

smaller error function values by definition, but also 

an increasing risk of overfitting. 

 

IV. Conclusion 
The k-means algorithm is widely used for 

clustering to optimize large sets of data. But the 

standard algorithm do not always guarantee good 

results as the accuracy of the final clusters depend on 

the selection of initial centroids. Moreover, the 

computational complexity of the standard algorithm 

is objectionably high owing to the need to reassign 

the data points a number of times, during every 

iteration of the loop. This paper presents an opimized 

k-means algorithm which combines a systematic 

method for finding initial centroids and an efficient 

way for assigning data points to clusters. This method 

ensures the entire process of clustering in O(n2 ) time 

without sacrificing the accuracy of clusters. The 

previous improvements of the k-means algorithm 

compromise on either accuracy or efficiency. 
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